
www.manaraa.com

A Study of Uncertainty in Software Cost and
Its Impact on Optimal Software Release Time
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Abstract—For a software development project, management often faces the dilemma of when to stop testing the software and release

it for operation, which requires careful decision making as it has great impact on both software reliability and project cost. In most

existing research on the optimal software release problem, the cost considered was the Expected Cost (EC) of the project. However,

what concerns management is the Actual Cost (AC) of the project rather than the EC. Treatment (such as minimization) of the EC may

not ensure the desired low level of the AC due to the uncertainty (variability) involved in the AC. In this paper, we study the uncertainty

in software cost and its impact on optimal software release time in detail. The uncertainty is quantified by the variance of the AC and

several risk functions. A risk-control approach to the optimal software release problem is proposed. New formulations of the problem

which are extensions of current formulations are developed and solution procedures are established. Several examples are presented.

Results reveal that it seems crucial to take into account the uncertainty in software cost in the optimal software release problem;

otherwise, unsafe decisions may be reached which could be a false dawn to management.

Index Terms—Cost estimation, nonhomogeneous Poisson process (NHPP), reliability, software release, time estimation.
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1 INTRODUCTION

BROADLY speaking, a software development process
consists of four phases: requirements and specification,

design, coding, and testing. Software testing is a verification
process for software quality and reliability improvement,
which features failure observation phenomenon and fault
removal activities. As the testing proceeds, latent software
faults could be identified and removed, resulting in
reliability growth of the software being tested. Software
reliability models (SRMs) are commonly used to monitor
the testing process and to measure and predict present and
future reliability of the software.

In order to achieve a satisfactory reliability level, soft-
ware will normally be tested for a rather long time before it
can be released for operation. The testing phase is generally
the most costly and time-consuming phase, in which
approximately 40-50 percent of the total amount of software
development resource is consumed [1]. In some cases, e.g.,
for safety-critical software, a certain high reliability level is
often required by the customer and, consequently, the
software has to be tested even longer until this reliability
requirement is satisfied.

From management’s point of view, however, it is

desirable to start the sale of the software product as early

as possible and hence begin to make profit. A delay in the

release of the software product may result in a loss of

market share, which finally leads to reduced economic

benefits of the software product [2]. To resolve this

dilemma, appropriate decision making needs to be made

regarding when to stop testing the software and release it to

the customer. This is normally referred to as the optimal

software release problem in the literature, which has attracted

a lot of attention and research since the early 1980s, see [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],

[17], [18], [19], [20], [21], [22].
In the literature, this problem was generally formulated

as a (constrained) optimization problem in one of the

following ways:
Formulation 1. (See, e.g., [13], [14], [16], [19].)

Minimize E CðT Þ½ �: ð1Þ

Formulation 2. (See, e.g., [6], [9], [11], [18], [21].)

Minimize E CðT Þ½ �; ð2Þ

Subject to RðxjT Þ � R0: ð3Þ

Formulation 3. (See, e.g., [8].)

Maximize RðxjT Þ; ð4Þ

Subject to E CðT Þ½ � � C0: ð5Þ

In the above formulations, T is the release time of the

software product and CðT Þ is the cost incurred, which is a

function of the release time. E½CðT Þ� is the expectation of

CðT Þ and RðxjT Þ is the reliability of the software product if

it is released at time T . R0 is the required reliability level
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before the software can be released and C0 is the allowed
cost (budget) for the software project.

Formulations 1 and 2 stem from the idea of cost
minimization, with Formulation 2 further considering the
reliability requirement for the software product. Formula-
tion 3 stems from the idea of reliability maximization with a
cost (budget) constraint since, in some cases, e.g., for safety-
critical software, reliability is the greatest concern.

However, it is important to take note that software cost,
CðT Þ, is a random variable by nature due to various aspects
of uncertainty involved in the testing and operational
phases of the software product. For example, until release
time T , the number of software faults that will be detected
and removed is random; thus, the cost incurred by fault
removal activities in the testing phase is random. Similarly,
the cost incurred by fault removal activities in the
operational phase is random too. Furthermore, the length
of the software product’s life cycle is random [9]. There are
other aspects of uncertainty involved in software cost
estimation as well [23], [24].

Since CðT Þ is a random variable, a natural way to treat it
is to consider its expectation, E½CðT Þ�. In Formulations 1
and 2, E½CðT Þ� is used as the objective function and, in
Formulation 3, it is used as a constraint.

However, it is known that, for a random variable, there is
a certain level of variability involved in its realization
values, which can be described by, e.g., its variance. The
value of one realization of a random variable can be quite
far from the value of its expectation, with a probability that
can be obtained from the distribution of the random
variable. Therefore, we argue that, in the optimal software
release problem, even if the Expected Cost (EC), E½CðT Þ�, is
minimized (see Formulations 1 and 2), management could
not have sufficient confidence that the Actual Cost (AC)
incurred in the software project, CðT Þ, will be near this
minimum unless the probability that this happens is shown
to be high enough [22].

From the law of large numbers, it is known that the
treatment (such as minimization) of the expectation of a
random variable makes sense for decision making only if
the random variable can be realized for a large number of
times. This situation can be true for some industrial
applications. For example, in a queuing system, if by
certain means the expected queuing time is minimized, then
from a long-run perspective this is meaningful since the
queuing time, which is a random variable, will be realized
for many times (as long as the queuing system is in
operation), and hence we can expect that the average
queuing time is small.

Unfortunately, this situation is not applicable to software
development projects. In reality, a software development
project will not be repeated for many times and, when a
project is completed, the next project to start may be
different from the previous one in many aspects. Thus, the
average (expected) cost could not be manifested in a single
software project or across software projects.

From the above discussions, it seems that, in the optimal
software release problem, besides the expectation of soft-
ware cost, one should also consider the uncertainty
involved, i.e., the variability of software cost; otherwise,

unsafe decisions could be made. Current formulations (1)-
(5) could lead to the best point estimate of the optimal

software release time; nevertheless, if the uncertainty
(variability) of software cost is taken into account, a more

informed and more appropriate decision could be made.
In this paper, we study the uncertainty in software cost

and its impact on the optimal software release problem in

detail. Our discussion will be based on nonhomogeneous
Poisson process (NHPP) SRMs, for which the software
failure process is assumed to follow an NHPP. Denoting by

NðtÞ the cumulative number of observed failures until
time t, NðtÞ follows Poisson distribution with parameter

mðtÞ, i.e.,

Pr NðtÞ ¼ nf g ¼ mðtÞ½ �n

n!
e�mðtÞ; n ¼ 0; 1; 2; � � � ; ð6Þ

where mðtÞ � E½NðtÞ� is the mean value function of the
NHPP. The failure intensity function, �ðtÞ, is mathematically

the derivative of the mean value function, i.e.,

�ðtÞ � d

at
mðtÞ: ð7Þ

NHPP SRMs form a major class of SRMs. They have

many good properties that account for their popularity
among researchers and practitioners. For example, the

calculation of the expected number of failures up to time t
is very simple due to the existence of mean value function

and the model parameters can be easily estimated using the
Maximum Likelihood Estimation (MLE) method [2], [25],
[26]. As a result, NHPP SRMs have been thoroughly studied

in the literature and widely used in practice.
The remainder of this paper is organized as follows: In

Section 2, we give a brief review on related research work.

In Section 3, we study the uncertainty in software cost from
the perspective of the AC’s variance. In Section 4, we study

the uncertainty from a risk perspective and we conduct
detailed risk analyses for two representative software cost

models. In Section 5, a new approach to the optimal
software release problem based on the principle of risk

control is proposed and solution procedures are estab-
lished. Several examples are given to demonstrate the ideas

behind and the solution procedures. Finally, some conclud-
ing remarks are given in Section 6.

2 RELATED WORK

Since some early work on the optimal software release

problem [3], [4], [5], [6], [7], new software cost models have
been developed and used in related research in recent years.

Pham [9] developed a software cost model with imperfect
debugging, random life cycle, and penalty cost for the delay

in software release. The idea of penalty cost was also
suggested in [4], [10], and imperfect debugging was also

addressed in [13]. Pham and Zhang [11] developed a
generalized cost model which considered fault removal
cost, warranty cost, and software risk cost due to software

failures. The risk cost was also addressed in [17], [20].
Kimura et al. [12] developed a software cost model

considering software maintenance cost during the warranty
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period. Pham [15] presented a good review on advances in
NHPP SRMs and software cost modeling.

To address testing effort and efficiency in software
reliability modeling, Huang and Lyu [18], [19] proposed an
SRM which incorporated a generalized logistic testing-
effort function and developed a software cost model
considering testing effort and efficiency.

When software testing is considered to be not continuous
in time but to be constituted by several stages, with each
stage terminated at the observation of a software failure, the
optimal software release problem can be formulated as a
sequential decision problem. The decision making involved
becomes whether or not to enter the next testing stage at the
end of current testing stage. Morali and Soyer [14] studied
this problem by taking a Bayesian decision theoretic
approach. Chang and Hung [17] studied this problem by
formulating it as an open-loop-feedback-optimal control
problem. Liu and Chang [20] developed a software cost
model based on a non-Gaussian Kalman filter model.

Much of the existing research on the optimal software
release problem is based on NHPP SRMs; however, there is
also research on this topic based on other types of SRMs.
Hou et al. [10], Boland and Singh [16], and Bolanda and
Chuiv [21] studied the optimal software release problem
based on the hypergeometric software reliability growth
model, the Moranda geometric deeutrophication model,
and a generalized Jelinski-Moranda model, respectively. In
fact, the optimal software release problem is independent of
the underlying SRMs used and it can be formulated and
studied under any SRM.

It appears that existing research on the optimal software
release problem has been focusing on developing more
realistic software cost models. This could make the decision
made by management more appropriate. Nevertheless,
another important issue, i.e., that the formulations adopted
for the problem, Formulations 1-3, do not take sufficient
account of the uncertainty involved in software cost, has not
been addressed in most of existing research except [22]. The
deficiency in current research on optimal software release
problem motivates our research presented in this paper.

3 UNCERTAINTY IN SOFTWARE COST

The AC of a software project, CðT Þ, is a random variable;
thus, there exists a certain level of uncertainty (variability)
of its realization values. There are two ways to quantify the
uncertainty. One is by the variance of CðT Þ, the other is by
the probability of an event of interest to management such
as the probability that the AC will exceed the EC by
10 percent. The second way is a more accurate quantifica-
tion of the uncertainty in CðT Þ.

In this section, we study the uncertainty inCðT Þ in the first
way, i.e., quantifying the uncertainty by the variance. In
Section 4, we will study the uncertainty in the second way.

3.1 Software Cost Modeling

In general, software cost, CðT Þ, can be formulated as

CðT Þ ¼ c0 þ
X5

i¼1

CiðT Þ: ð8Þ

In the above, c0 is the setup cost (or called the initial
testing cost [12]) for software testing [11], which is often
assumed to be a constant. C1ðT Þ is the cost incurred by fault
removal activities in the testing phase, C2ðT Þ is the cost
incurred by fault removal activities in the operational
phase, and C3ðT Þ is the general cost of testing (e.g., payment
to the testing team members); see, e.g., [2], [15]. C4ðT Þ is the
risk cost due to software failures [11], [17], [20] and C5ðT Þ is
the penalty cost for the delay in software release [4], [9],
[10]. In existing research, different formulations of cost
components CiðT Þ, 1 � i � 5, have been proposed. More-
over, other cost components can be considered and added
to the cost model (8) as well.

It is known that the costs of quality can be categorized into
prevention costs, appraisal costs, internal failure costs, and
external failure costs [27]. Slaughter et al. [28] expatiated that,
in software development, prevention costs include the costs
of training staff in design methodologies, quality improve-
ment meetings, software design reviews, etc.; appraisal costs
include the costs of code inspections, testing, software
measurement activities, etc.; internal failure costs include
the costs of rework in programming, reinspection, retesting,
etc.; external failure costs include field service and support,
maintenance, liability damages, litigation expenses, etc. In the
cost model (8),C1ðT Þ andC3ðT Þ can be viewed as mixtures of
appraisal costs and internal failure costs; C2ðT Þ, C4ðT Þ, and
C5ðT Þ can be viewed as external failure costs. Therefore, it can
be noted that the cost defined in (8), CðT Þ, is only part of the
total cost incurred in the life cycle of the software product. In
the literature, CðT Þ is often called a software cost model, see,
e.g., [6], [11], [12], [15]; however, it is important to keep in
mind that the cost considered here is different from the total
(life cycle) cost of a software product.

For the formulation of C1ðT Þ, generally, it is considered
to be proportional to the number of software faults removed
during the testing phase. Similarly, C2ðT Þ is considered to
be proportional to the number of software faults removed
during the operational phase. Thus,

C1ðT Þ ¼ c1NðT Þ; C2ðT Þ ¼ c2 NðTLCÞ �NðT Þ½ �; ð9Þ

where TLC is the life-cycle length of the software product. c1

is the cost of removing a fault in the testing phase and c2 is
the cost of removing a fault in the operational phase;
normally, we have c2 > c1. C3ðT Þ is assumed to be a power
function of testing time T [11], i.e.,

C3ðT Þ ¼ c3T
�; ð10Þ

where c3 is a constant. The parameter � ð0 < � � 1Þ reflects
the fact that the increasing gradient is different in the
beginning and at the end of testing [11]. In the simplest case,
� ¼ 1 (see, e.g., [2], [9], [16], [21]).

For SRMs considering testing effort (see, e.g., [18], [19]),
C3ðT Þ is formulated as

C3ðT Þ ¼ cw WðT Þ½ ��; ð11Þ

where WðT Þ is the total testing-effort spent in ð0; T � and cw
is the cost per unit testing-effort expenditure.

The risk cost due to software failures, C4ðT Þ, is generally
formulated as [11], [20]:

YANG ET AL.: A STUDY OF UNCERTAINTY IN SOFTWARE COST AND ITS IMPACT ON OPTIMAL SOFTWARE RELEASE TIME 815
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C4ðT Þ ¼ c4 1�RðxjT Þ½ �; ð12Þ

where c4 is a constant and RðxjT Þ is the reliability of the
software if it is released at time T .

The penalty cost, C5ðT Þ, can be formulated as [4], [9], [10]

C5ðT Þ ¼ IðT � TdÞCpðT � TdÞ; ð13Þ

where Td is the scheduled release time of the software, Ið�Þ
is an indicator function, which is defined as

IðtÞ � 1; if t � 0
0; otherwise;

�
ð14Þ

and Cpð�Þ is the penalty cost function.
Despite the fact that many new software cost models have

been proposed, for most of them,C1ðT Þ,C2ðT Þ, andC3ðT Þ are
common cost components that have been adopted. In fact, (8)
is a generalization of a widely used basic software cost model
(see, e.g., [2], [3], [16], [18], [19], [21]):

CðT Þ ¼ C1ðT Þ þ C2ðT Þ þ C3ðT Þ; ð15Þ

where C1ðT Þ, C2ðT Þ, and C3ðT Þ have the same meaning as
those in (8).

3.2 Uncertainty in Software Cost Measured by the
Variance

From the software cost model (8), we can derive the
variance of CðT Þ. Note that C0, C3ðT Þ, C4ðT Þ, and C5ðT Þ are
not random variables, as can be seen from (10)-(13); thus,
we have

V ar CðT Þ½ � ¼ V ar C1ðT Þ þ C2ðT Þ½ �: ð16Þ

For NHPP SRMs, for any fixed values of T and TLC , both
NðT Þ and NðTLCÞ �NðT Þ are Poisson distributed random
variables, with parameters mðT Þ and mðTLCÞ �mðT Þ,
respectively. Furthermore, because NHPP has independent
increments, NðT Þ and NðTLCÞ �NðT Þ are independent.
Therefore, for NHPP SRMs, the variance given by (16)
becomes

V ar CðT Þ½ � ¼ c2
1V ar NðT Þ½ � þ c2

2V ar NðTLCÞ �NðT Þ½ �
¼ c2

1mðT Þ þ c2
2 mðTLCÞ �mðT Þ½ �:

ð17Þ

In some related research, the following assumptions are
made:

1. The life cycle of the software product is infinity.
2. m1 � limt!1mðtÞ exists.

These assumptions are not very restrictive and could be
valid under some real-life situations. Assumption 1 is made
by the fact that, generally speaking, a software product will
be used much longer than the time spent in its testing
phase; thus, the life cycle of the software product could be
assumed to be infinity [2]. Assumption 2 can be satisfied by
NHPP models with finite failures, e.g., the Goel-Okumoto
(G-O) model [29] and the S-shaped model [30], [31].
Therefore, we also make these two assumptions in our
research. The variance of CðT Þ for NHPP SRMs, given by
(17), thus becomes

V ar CðT Þ½ � ¼ c2
2m1 � c2

2 � c2
1

� �
mðT Þ: ð18Þ

Because c2 > c1 and mð�Þ is a monotonous increasing
function with mð0Þ ¼ 0, it can be obtained from (18) that
V ar½CðT Þ� is a monotonous decreasing function with T and

V ar CðT Þ½ �max¼ c2
2m1 ðT ¼ 0Þ;

V ar CðT Þ½ �min¼ c2
1m1 ðT ¼ 1Þ:

ð19Þ

Very often c2
1m1 takes a rather big value; thus, the

variance of the AC would not be small, i.e., a certain level of
uncertainty is involved in software cost which may not be
negligible.

To exemplify this, we give an example here.

Example 1. Consider the optimal software release problem
studied in [32]. It took Formulation 2 and the SRM used
was the G-O model whose mean value function is

mðtÞ ¼ að1� e�btÞ; ð20Þ

where a and b are constants. The G-O model is one of the
earliest NHPP SRMs developed and has far-reaching
influence on later software reliability modeling; thus, it
has been widely used in the literature. For the G-O
model, we have

m1 ¼ a: ð21Þ

In [32], the basic software cost model given by (15) was
used, with C3ðT Þ taking formulation (10), and � ¼ 1. Table 1
summarizes the model parameters used in [32]. The SRM
parameters were estimated from the real software project
data, reported in [29], which consists of 26 time-between-
failure data obtained in the testing phase.

The optimal software release time was obtained as
T � ¼ 774, under which the EC is E½CðT �Þ� ¼ 1:50	 104.

In the original work [32], no consideration of the
uncertainty in CðT Þ was given. It would be interesting to
study how much the uncertainty is and thus examine the
validity of the optimal software release time obtained.

The variance of CðT �Þ can be obtained from (18), which is
V ar½CðT �Þ� ¼ 2:21	 106.

This result implies that, on average, the AC deviates
from the EC by 1:49	 103, which is approximately
9.9 percent of the minimum EC.

4 RISK ANALYSIS IN OPTIMAL SOFTWARE RELEASE

PROBLEM

4.1 Risk Functions

Besides the variance of CðT Þ, the uncertainty in software
cost can be quantified in another way. Denote by P1ðT Þ the
probability that the AC of a software project is higher than
the EC, i.e.,
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P1ðT Þ � Pr CðT Þ > E CðT Þ½ �f g: ð22Þ

P1ðT Þ is a function of software release time T . This

probability can be viewed as a kind of risk, which is of great

concern to management. If this risk is controlled to a

reasonable level, then, from (22), it can be seen that, when

the EC is minimized, the AC will have little chance to

become higher than this minimum, which is desirable.
A more generalized risk function can be defined as

follows:

P�
2 ðT Þ � Pr CðT Þ > ð1þ �Þ � E CðT Þ½ �f g; ð23Þ

where � ð� � 0Þ is a constant representing the allowed

margin for the AC being higher than the EC. P1ðT Þ is in fact

a special case of P�
2 ðT Þ for which � ¼ 0.

4.2 Risk Analysis for the Basic Software Cost Model

For any software cost model used in the optimal software

release problem, it is essential to conduct analysis of the risk

involved, i.e., P1ðT Þ or P�
2 ðT Þ. In this paper, our research

will focus on two representative software cost models. In

Section 4.2, we conduct risk analysis for the basic software

cost model (15) and, in Section 4.3, we conduct risk analysis

for a generalized cost model proposed in [11]. Risk analysis

for other software cost models can be carried out in a

similar fashion.
Take formulation (10) for C3ðT Þ, then, under Assump-

tions 1 and 2, the basic software cost model (15) becomes

CðT Þ ¼ c1NðT Þ þ c2 Nð1Þ �NðT Þ½ � þ c3T
� ð24Þ

and the EC becomes

E CðT Þ½ � ¼ c1mðT Þ þ c2 mð1Þ �mðT Þ½ � þ c3T
�: ð25Þ

The cost models (24)-(25) have been widely used in

existing research, see, e.g., [2], [3], [16], [21]. For the basic

software cost model (24), we have the following results:

Theorem 1. If the software testing process is modeled by an

NHPP SRM, then, under Assumptions 1 and 2, P1ðT Þ for the

basic software cost model (24) is

P1ðT Þ ¼ 1� e�m1
Xkup
k¼0

Xjk
j¼0

mðT Þ½ �k

k!

m1 �mðT Þ½ �j

j!
ð26Þ

and its limit is

lim
T!1

P1ðT Þ ¼ 1� e�m1
Xhm1i
k¼0

ðm1Þk

k!
: ð27Þ

In the above,

kup � h�1i; jk �
c1ð�1 � kÞ

c2

� �
;

�1 �
c1mðT Þ þ c2 m1 �mðT Þ½ �

c1
:

ð28Þ

The notation hxi represents the largest integer value that

is less than or equal to x. The proof is similar to that given in

[22] and thus is omitted here.

Theorem 2. If the software testing process is modeled by an

NHPP SRM, then, under Assumptions 1 and 2, P�
2 ðT Þ for the

basic software cost model (24) is

P�
2 ðT Þ ¼ 1� e�m1

Xkup
k¼0

Xjk
j¼0

½mðT Þ�k

k!

m1 �mðT Þ½ �j

j!
; ð29Þ

where

kup � h�2i; jk �
c1ð�2 � kÞ

c2

� �
;

�2 �
ð1þ �Þc1mðT Þ þ ð1þ �Þc2 m1 �mðT Þ½ � þ �c3T

�

c1
:

ð30Þ

The proof is given in the Appendix.
Theorems 1 and 2 provide close-form formulations to

calculate P1ðT Þ and P�
2 ðT Þ for the basic software cost model

(24). Here, we give two illustrative examples.

Example 2. Reconsider Example 1. The plots of E½CðT Þ� and

P�
2 ðT Þ with different values of � versus T are shown in

Figs. 1a and 1b, respectively. Note that the curve in

Fig. 1b, for which � ¼ 0, is in fact the plot of P1ðT Þ.

YANG ET AL.: A STUDY OF UNCERTAINTY IN SOFTWARE COST AND ITS IMPACT ON OPTIMAL SOFTWARE RELEASE TIME 817

Fig. 1. Plots of (a) E½CðT Þ� and (b) P�
2 ðT Þ for the basic software cost

model (24), using model parameters in Table 1.
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Since T � ¼ 774, we have P1ðT �Þ ¼ 0:47 and
P 0:1

2 ðT �Þ ¼ 0:15, obtained from (26) and (29), respectively.
From (27), the limit of P1ðT Þ is obtained as P1ð1Þ ¼ 0:45,
as can be seen in Fig. 1b. These results mean that if we
take the optimal software release time as 774, then,
although the EC of the software project is nearly
minimized, there is a risk (probability) of 0.47 that the
AC incurred will exceed the minimized EC and there is a
risk of 0.15 that the AC incurred will exceed the
minimized EC by 10 percent.

Example 3. It is interesting to study the properties of P1ðT Þ
and P�

2 ðT Þ for the basic software cost model (24) under
other model parameter values. Here, we take Formula-
tion 1 for the optimal software release problem and we
take model parameter values as those used in [11].

The cost parameters were estimated from real project
data collected by some AT&T researchers [11], which are
c1 ¼ 60, c2 ¼ 3;600, and c3 ¼ 700.

In [11], the SRM used was the G-O model. From the
failure data recorded in a real software project (see
Table 1 in [11]), model parameters were estimated as
â ¼ 142:32 and b̂ ¼ 0:1246.

Under these parameters, the optimal software release
time is obtained as T � ¼ 36, under which the minimum
EC is E½CðT �Þ� ¼ 39;417.

The plots ofE½CðT Þ� andP�
2 ðT Þwith different values �

versus T are shown in Figs. 2a and 2b, respectively. It can
be seen that the risk values at the optimal release time are
P1ðT �Þ ¼ 0:47 and P 0:1

2 ðT �Þ ¼ 0:21.

From Examples 2 and 3, it can be seen that, by the
analyses of P1ðT Þ and/or P�

2 ðT Þ together with the EC, a
more reasonable optimal software release time could be
obtained. For example, in Example 3, it can be seen in Fig. 2
that if we increase the release time, e.g., take T 0 ¼ 52, then
P1ðT 0Þ will reach its minimum at 0.30 and P 0:1

2 ðT 0Þ ¼ 0:02,
i.e., the risks of P1ðT 0Þ and P 0:1

2 ðT 0Þ will reduce by
36.2 percent and 90.5 percent, respectively. The EC will
increase by 16.0 percent though, i.e., E½CðT 0Þ� ¼ 45;713.
From a risk-control perspective, T 0 may be a better
alternative for software release time than T �.

If the increase of software release time from 36 to 52 is
considered to be unacceptable, e.g., under the pressure of
scheduled software delivery, then management could make a
compromise between the reduction of the risks and the
increase of the release time. For example, management could
take T 0 ¼ 38, under which P1ðT 0Þ ¼ 0:39, P 0:1

2 ðT 0Þ ¼ 0:14,
and E½CðT 0Þ� ¼ 39;989. It can be seen that, even by a small
increase of the release time (from 36 to 38), the risks can be
reduced to some extent.

Obviously, either taking T � or T 0 as the optimal software
release time is essentially a matter of trade-off, which is at
the discretion of management. In Section 5, we will present
a risk-control approach to the optimal software release
problem.

In Figs. 1b and 2b, we can also observe the patterns of
P1ðT Þ and P�

2 ðT Þ for the basic software cost model (24). The
curve of P1ðT Þ has a bit of fluctuation when T is small; then
there is a notch when T increases, after which the curve
converges to the value given by (27) when T approaches

infinity. The fluctuation of the curve is caused by the

operation of h�i in (28). The curve of P�
2 ðT Þ, � > 0 is roughly

convex, forming a bulge, and approaches zero when T

approaches infinity.

4.3 Risk Analysis for the Generalized Software Cost
Model

In this section, we conduct risk analysis on a more

complicated cost model, the generalized software cost

model proposed in [11], which is

CðT Þ ¼ c0 þ c1

XNðT Þ
i¼1

Yi þ c2

XNðTþTwÞ

i¼NðT Þ
Wi þ c3T

�

þ c4 1�RðxjT Þ½ �;

ð31Þ

where NðtÞ is the cumulative number of observed software

failures until time t, fNðtÞ; t � 0g is an NHPP with a mean

value function ofmðtÞ, Tw is the warranty time, and Yi andWi

are times spent to remove the ith software fault in the testing

phase and in the operational phase, respectively. Yis are

assumed to be independent and identically distributed (i.i.d.)

random variables, each following truncated exponential
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Fig. 2. Plots of (a) E½CðT Þ� and (b) P�
2 ðT Þ for the basic software cost

model (24), using model parameter values as those used in [11].
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distribution with parameters �y and T0y; Wis are also
assumed to be i.i.d. random variables, each following
truncated exponential distribution with parameters �w
and T0w [11]. This generalized software cost model seems
to be the first one that considered both the risk cost and the
warranty cost and has a strong influence on later software
cost modeling.

Take the expectation on both sides of (31), then the EC is
obtained as follows [11]:

E CðT Þ½ � ¼ c0 þ c1�ymðT Þ þ c2�w mðT þ TwÞ �mðT Þ½ �
þ c3T

� þ C4 1�RðxjT Þ½ �;
ð32Þ

where �y ¼ E½Yi� and�w ¼ E½Wi�, which can be calculated by

�y ¼
1� ð�yT0y þ 1Þe��yT0y

�yð1� e��yT0yÞ ; �w ¼
1� ð�wT0w þ 1Þe��wT0w

�wð1� e��wT0wÞ :

ð33Þ

For the generalized software cost model (31), the risk
function P1ðT Þ defined by (22) becomes

P1ðT Þ ¼ Pr c1

XNðT Þ
i¼1

Yi þ c2

XNðTþTwÞ

i¼NðT Þ
Wi > s1

8<
:

9=
;; ð34Þ

where

s1 � c1�ymðT Þ þ c2�w mðT þ TwÞ �mðT Þ½ �: ð35Þ

The risk function P�
2 ðT Þ defined by (23) becomes

P�
2 ðT Þ ¼ Pr c1

XNðT Þ
i¼1

Yi þ c2

XNðTþTwÞ

i¼NðT Þ
Wi > s2

8<
:

9=
;; ð36Þ

where

s2 � ð1þ �Þs1 þ � c0 þ c3T
� þ c4 1�RðxjT Þ½ �f g: ð37Þ

In the optimal software release problem, the evaluation
of software reliability is of major importance. Software
reliability measurement is often used as a constraint in the
optimization problem, see (3), and, in some cases, the cost
model, (2), itself involves the evaluation of software
reliability, see, e.g., (31). In the original work [11], the
software reliability measurement used was the testing

reliability, i.e.,

RðxjT Þ ¼ e� mðTþxÞ�mðT Þ½ �: ð38Þ

The testing reliability measurement has been used in
most related research, see, e.g., [12], [15], [18].

However, from the customer’s point of view, the
operational reliability is a more meaningful and appropriate
measurement of software reliability [32]. Therefore, in our
research, we adopt the operational reliability for software
reliability measurement, i.e.,

RðxjT Þ ¼ e��ðT Þ�x; ð39Þ

where �ð�Þ is the failure intensity function given by (7).
For the generalized software cost model (31), due to the

model complexity, analytical results for calculating P1ðT Þ
and P�

2 ðT Þ such as (26) and (29) are very difficult to derive.

In this case, Monte Carlo simulation can be used to obtain
P1ðT Þ and P�

2 ðT Þ.
For a given value of T , the simulation steps to calculate

P1ðT Þ are listed as follows:

1. Generate a value of n, which is a realization of a
Poisson distributed random variable N1 with mean
mðT Þ. Generate a value ofm, which is a realization of a
Poisson distributed random variable N2 with mean
mðT þ TwÞ �mðTwÞ. N1 and N2 are independent.

2. Generate y1; � � � ; yn, which are n independent reali-
zations of a random variable that follows truncated
exponential distribution with parameters �y and T0y.

3. Generate w1; � � � ; wm, which are m independent
realizations of a random variable that follows trun-
cated exponential distribution with parameters �w
and T0w.

4. Calculate z � c1

Pn
i¼1 yi þ c2

Pm
i¼1 wi. Calculate s1

defined by (35).
5. Repeat Steps 1-4 for l times. Denote by l0 the number

of times that z > s1 happens and l0=l is an
approximation of P1ðT Þ.

The calculation of P�
2 ðT Þ can be carried out in a similar

fashion.

Example 4. To illustrate, we consider the example presented
in [11]. It took Formulation 1 and the cost model used
was the generalized software cost model (31). Table 2
summarizes the model parameters [11].

For parameters not given in [11], we set

T0y ¼ 100; T0w ¼ 500; �y ¼ 2:0; �w ¼ 2:0; ð40Þ

under which the values of �y and �w, obtained from (33),
become the same as those in Table 2. We carry out l ¼
5;000 iterations for any fixed value of T .

The plots of E½CðT Þ� and P�
2 ðT Þ with different values of

� versus T are shown in Figs. 3a and 3b, respectively. Under
Formulation 1, the optimal software release time was
obtained as T � ¼ 33 [11], under which E½CðT �Þ� ¼ 24;854.
However, in Fig. 3b, it can be seen that the risks under the
optimal release time are P1ðT �Þ ¼ 0:82 and P 0:1

2 ðT �Þ ¼ 0:49.
These values are too large to be acceptable.

This example again demonstrates that, in the optimal
software release problem, the uncertainty in software cost
should not be ignored. If it is ignored, then the optimal
software release time obtained, such as T � ¼ 33 in this
example, would give management a false dawn that the
cost of this software project would be at a low level (e.g., has
been minimized). In fact, it may be possible (with a high
probability of 0.82 in this example) that the AC of the
software project would exceed this level. As a result,
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management may be deceived and no proper actions would

be taken in a timely manner to prevent the project from

running over budget.
In Fig. 3b, we can observe the patterns of P1ðT Þ and

P�
2 ðT Þ for the generalized software cost model (31). The

curve for which � ¼ 0 in Fig. 3b has a similar pattern to that

in Fig. 2b, with the former having only part of the latter

(from the value of T that minimizes P1ðT Þ in Fig. 2b

onward). The pattern of P�
2 ðT Þ for the generalized software

cost model (31) is similar to that for the basic software cost

model (24), i.e., the curves are roughly convex and

approach zero when T approaches infinity.

5 A RISK-CONTROL APPROACH TO OPTIMAL

SOFTWARE RELEASE PROBLEM

From discussions in Section 4, it is clear that in the optimal

software release problem the uncertainty involved in

software cost should not be neglected since it may incur

great risk which, if not considered, could make the software

project run over budget. In this section, we propose a risk-

control approach to the optimal software release problem

and we develop new problem formulations that are

extensions of current formulations.

5.1 Minimization of Expected Cost with Risk
Constraint

To address the uncertainty in software cost and control

the risk incurred, a risk constraint can be added to

Formulations 1 and 2 of the optimal software release

problem.
Formulation 4.

Minimize E CðT Þ½ �; ð41Þ

Subject to P�
2 ðT Þ � �: ð42Þ

Formulation 5.

Minimize E CðT Þ½ �; ð43Þ

Subject to RðxjT Þ � R0; ð44Þ

P�
2 ðT Þ � �: ð45Þ

In the above, P�
2 ðT Þ is defined by (23) and � is a constant

representing allowed risk level by the software project’s

management.
The solution procedures to Formulations 4 and 5 can be

established by joint analyses of the EC, P�
2 ðT Þ, and RðxjT Þ

functions, which are all functions of software release time T .

For example, if the cost model used is the generalized

software cost model (31), then the solution procedures for

Formulation 5 using P�
2 ðT Þ, � > 0, in (45) are given as

follows:

Procedure 1.

i. ObtainT �TBD ðT �TBD � 0Þwhich is the solution to (43)-(44);

ii. If P�
2 ðT �TBDÞ � �, then

T � ¼ T �TBD; procedure ends.

else

a) Obtain the smallest value of T ðT > T �TBDÞ which

makesP�
2 ðT Þ � � satisfied; denote this value by T 1

P2;

b) T � ¼ T 1
P2; procedure ends.

If the cost model used is the generalized software cost

model (31), then the solution procedures for Formulation 4

using P�
2 ðT Þ, � > 0 in (45) are given as follows:

Procedure 2.

i. Obtain T �TBD ðT �TBD � 0Þ, which is the solution to (41);

ii. If P�
2 ðT �TBDÞ � �, then

T � ¼ T �TBD; procedure ends.
else

a) Obtain the smallest value of T ðT > T �TBDÞ, which

makes P�
2 ðT Þ � � satisfied;

denote this value by T 1
P2;

b) Obtain the largest value of T ð0 � T < T �TBDÞ, which

makes P�
2 ðT Þ � � satisfied; denote this value by T 2

P2;

c) If E½CðT 1
P2Þ� < E½CðT 2

P2Þ�, then

T � ¼ T 1
P2; procedure ends.

else if E½CðT 1
P2Þ� > E½CðT 2

P2Þ�, then

T � ¼ T 2
P2; procedure ends.

else

T � ¼ T 1
P2 or T � ¼ T 2

P2, i.e., there are two solutions to

the optimal software release problem; procedure

ends.

The establishment of the above solution procedures is

quite straightforward; thus, detailed explanations or proof

of these procedures are omitted. The solution procedures
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Fig. 3. Plots of (a) E½CðT Þ� and (b) P�
2 ðT Þ for the generalized software

cost model (31), using model parameters in Table 2 and (40).
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under other situations for Formulations 4 and 5 (e.g., using
the basic software cost model (24) or using P�

2 ðT Þ, � ¼ 0 in
(45)) can be established in a similar manner.

Example 5. To illustrate, we reconsider Example 4, which
takes Formulation 1 [11]. Now, we study this optimal
software release problem under Formulation 5. The
parameter values are given in Table 2 and (40).

Suppose the reliability requirement (44) is RðxjT Þ � 0:99
and, in the risk constraint (45), � ¼ 0:20 and � ¼ 0:10. Using
Procedure 1, the optimal software release time is found to be
T � ¼ 46, under which E½CðT �Þ� ¼ 28;396, shown as Case #4
in Table 3.

It is interesting to compare the solution obtained with the
one obtained in Example 4, which is shown as Case #1 in
Table 3. In Example 4, there is no reliability requirement or
risk constraint in the optimal software release problem, thus
the EC can reach its minimum. If reliability requirement
and/or risk constraint is imposed, normally the EC under
the new solution will increase, with the reliability require-
ment and/or the risk constraint satisfied (Cases #2-#5 in
Table 3). For example, if the reliability requirement of
RðxjT Þ � 0:99 is added, then the optimal software release
time becomes T � ¼ 36, under which E½CðT �Þ� increases by
1.0 percent, shown as Case #2 in Table 3. If a further risk
constraint of P 0:2

2 ðT Þ < 0:15 is imposed, then the optimal
software release time becomes T � ¼ 43, shown as Case #3 in
Table 3, under which E½CðT �Þ� increases by another
8.2 percent.

However, it should be noted that management should
not place too rigorous risk constraint on the optimal
software release problem. For example, if the risk constraint
is set to be P 0:1

2 ðT Þ < 0:1, then we have T � ¼ 71, under
which E½CðT �Þ� ¼ 28;396, shown as Case #5 in Table 3.
Compared with the solution obtained with the same
reliability requirement but without any risk constraint
(Case #2 in Table 3), the software release time and the EC
increase by 97 percent and 64 percent, respectively, which
may not be considered acceptable. Again, it is a matter of
trade-off and whether this new solution obtained is viable is
subject to management’s judgment.

5.2 Maximization of Reliability with Cost Constraint

Besides the minimization of expected software cost (as
Formulations 1 and 2), the optimal software release
problem can also be formulated as a maximization of
software reliability with a cost constraint (as Formulation 3).
When uncertainty in software cost is considered, the cost

constraint (5) that uses the EC should be modified into the
one using the AC.

Formulation 6.

Maximize RðxjT Þ; ð46Þ

Subject to PC0

3 ðT Þ � �; ð47Þ

where PC0

3 ðT Þ � PrfCðT Þ > C0g is the risk that the AC of

the software project is higher than the allowed budget, C0.

For the calculation of PC0

3 ðT Þ under the basic software cost

model (24), we have the following result:

Theorem 3. If the software testing process is modeled by an

NHPP SRM, then, under Assumptions 1 and 2, PC0

3 ðT Þ for
the basic software cost model (24) is

PC0

3 ðT Þ ¼ 1� e�m1
Xkup
k¼0

Xjk
j¼0

mðT Þ½ �k

k!

½m1 �mðT Þ�j

j!
; ð48Þ

where

kup � h�3i; jk �
c1ð�3 � kÞ

c2

� �
; �3 �

C0 � c3T
�

c1
: ð49Þ

Theorem 3 provides a close-form formulation to calculate
PC0

3 ðT Þ for the basic software cost model (24). The proof is
similar to that of Theorem 2 and hence is omitted.

Example 6. Reconsider Example 2, which uses the basic

software cost model (24) and for which the model

parameters are shown in Table 1. The plots of RðxjT Þ and

PC0

3 ðT Þ with different values of C0 versus T are shown in

Figs. 4a and 4b, respectively. We can observe the pattern

of PC0

3 ðT Þ curves; they appear to be roughly concave and

approach 1 when T approaches infinity.

For other software cost models, due to model complex-

ity, the analytical results for calculating PC0

3 ðT Þ such as (48)

may be difficult to derive. Similarly, Monte Carlo simula-

tion can be used to obtain PC0

3 ðT Þ. For example, for the

generalized software cost model, (31), for any given value of

T , the simulation steps to calculate PC0

3 ðT Þ are listed as

follows:

1. Generate a value of n, which is a realization of a

Poisson distributed random variable N1 with mean

mðT Þ. Generate a value ofm, which is a realization of a

Poisson distributed random variable N2 with mean

mðT þ TwÞ �mðTwÞ. N1 and N2 are independent.
2. Generate y1; � � � ; yn, which are n independent reali-

zations of a random variable which follows trun-

cated exponential distribution with parameters �y
and T0y.

3. Generate w1; � � � ; wm, which are m independent

realizations of a random variable, which follows

truncated exponential distribution with parameters

�w and T0w.

YANG ET AL.: A STUDY OF UNCERTAINTY IN SOFTWARE COST AND ITS IMPACT ON OPTIMAL SOFTWARE RELEASE TIME 821

TABLE 3
Solutions to Example 5 under Different Requirements



www.manaraa.com

4. Calculate

CðT Þ ¼ c0 þ c1

Xn
i¼1

yi þ c2

Xm
i¼1

wi

þ c3T
� þ c4 1�RðxjT Þ½ �:

5. Repeat Steps 1-4 for l times, denote by l0 the number
of times that CðT Þ > C0 happens, then l0=l is an
approximation of PC0

3 ðT Þ.
The calculation of PC0

3 ðT Þ under other software cost
models can be carried out in a similar fashion.

Example 7. Reconsider Example 4, which takes Formula-
tion 1 and uses the generalized software cost model
(31). Now, we study the optimal software release
problem under Formulation 6. The parameter values
are given in Table 2 and (40).

The plots of E½CðT Þ� and PC0

3 ðT Þ with different values of
C0 versus T are shown in Figs. 5a and 5b, respectively.

If in the cost constraint (47),C0 ¼ 35;000 and � ¼ 0:1, then,
from (47), it is obtained that 30 � T � � 50, as can be seen in
Fig. 5b. Since the software reliability is a monotonous
increasing function of T , the optimal software release time
should be T � ¼ 50, under which RðxjT �Þ ¼ 0:998, shown as
Case #5 in Table 4.

Table 4 presents solutions to the optimal software release
problem in Example 6 under different values of C0 and �.

From Examples 6 and 7, we can see that the solution

procedures of the optimal software release problem taking

Formulation 6 are quite straightforward, which are sum-

marized as follows:

Procedure 3.

i. Obtain T0 ðT0 � 0Þ at which PC0

3 ðT ÞðT � 0Þ reaches the

minimum;
ii. If PC0

3 ðT0Þ > �, then

there is no solution to the optimization problem

(46)-(47); procedure ends.

else if PC0

3 ðT0Þ ¼ �, then

T � ¼ T0; procedure ends.

else
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Fig. 4. Plots of (a) RðxjT Þ and (b) PC0

3 ðT Þ for the basic software cost

model (24), using model parameters in Table 1. In (b), Curve 1:

C0 ¼ 10; 000, Curve 2: C0 ¼ 13; 500, Curve 3: C0 ¼ 15; 000, and Curve 4:

C0 ¼ 20; 000.

Fig. 5. Plots of (a) RðxjT Þ and (b) PC0

3 ðT Þ for the generalized software

cost model (31), using model parameters in Table 2 and (40). In (b),

Curve 1: C0 ¼ 25; 000, Curve 2: C0 ¼ 30; 000, Curve 3: C0 ¼ 35; 000, and

Curve 4: C0 ¼ 40; 000.

TABLE 4
Solutions to Example 6 under Different Values of C0 and �
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a) Obtain the largest value of T ðT > T0Þ, which

makes PC0

3 ðT0Þ � � satisfied; denote this value

as T1;

b) T � ¼ T1; procedure ends.

5.3 Sensitivity Analysis

In our proposed formulations of the optimal software

release problem, Formulations 4-6, there are SRM and

software cost models involved which have a number of

parameters that have to be estimated. The estimation can be

done using collected data or by experiences from domain

experts. In practice, estimation errors are inevitable, either

due to insufficient data available or due to insufficient

knowledge of experts. Therefore, it is important to conduct

an analysis of the sensitivity of the result obtained with

respect to the estimated parameters so that management

can have some knowledge of the acceptability of the results

obtained and attention can be paid to those parameters that

affect the result significantly [33], [34], [35].
The sensitivity of the optimal software release time

obtained, T �, with respect to a model parameter, �, can be

quantified by Sp;�, which is the relative change of T � when �

is changed by 100p percent [33], [34], i.e.,

Sp;� �
T �ð�þ p�Þ � T �ð�Þ

T �ð�Þ : ð50Þ

Similarly, the sensitivity of expected software cost

obtained, E½CðT �Þ�, with respect to a model parameter, �,

can be quantified by Qp;�, which is defined as

Qp;� �
E C T �ð�þ p�Þ½ �f g �E C T �ð�Þ½ �f g

E C T �ð�Þ½ �f g : ð51Þ

We can also examine the effects of simultaneous changes

of several model parameters [35]. For example, the

sensitivity of T � with respect to two model parameters, �1

and �2, can be quantified by Sp1;p2;�1;�2
, which is the relative

change of T � when �1 is changed by 100p1 percent and �2 is

changed by 100p2 percent, i.e.,

Sp1;p2;�1;�2
� T

�ð�1 þ p1�1; �2 þ p2�2Þ � T �ð�1; �2Þ
T �ð�1; �2Þ

: ð52Þ

Similarly, the sensitivity of E½CðT �Þ� with respect to two

model parameters, �1 and �2, can be quantified by Qp1;p2;�1;�2
,

which is defined as

Qp1;p2;�1;�2
�

E C T �ð�1 þ p1�1; �2 þ p2�2Þ½ �f g � E C T �ð�1; �2Þ½ �f g
E C T �ð�1; �2Þ½ �f g :

ð53Þ

The sensitivity of T � and E½CðT �Þ� with respect to three

or more model parameters can be studied in a similar way.
For illustrative purpose, we consider Example 5 dis-

cussed in Section 5.1. The optimal software release time

obtained under the original values of model parameters is

T � ¼ 46, under which E½CðT �Þ� ¼ 28;396. We conduct a

sensitivity analysis for two model parameters, a (an SRM

parameter) and c2 (a cost model parameter). The results of

the sensitivity analysis for other model parameters are not

presented here as the purpose of this section is to highlight

the importance of sensitivity analysis and to illustrate its

procedures, rather than extensive sensitivity analysis.
Table 5 summarizes the results of sensitivity analysis for

parameters a and c2 when each parameter changes

separately. It can be seen that the sensitivity of T � and

E½CðT �Þ� with respect to model parameters a and c2 is at

acceptably low levels, e.g., when a increases by 10 percent,

the relative changes of T � and E½CðT �Þ� are 2.2 percent and

2.1 percent, respectively; when c2 decreases by 30 percent,

the relative changes of T � and E½CðT �Þ� are �6:5 percent

and �5:5 percent, respectively. Results in Table 5 also reveal

that a is a slightly more sensitive parameter than c2.
Tables 6 and 7 summarize the sensitivity analysis results

when parameters a and c2 change simultaneously in the

same direction and in the reverse direction, respectively.

The results show acceptable sensitivity levels too. There-

fore, it seems that T � and E½CðT �Þ� obtained in Example 5

are trustworthy.
It can be noted that carrying out extensive sensitivity

analysis for all model parameters requires much effort and

is time consuming. Xie et al. [36] proposed conducting

sensitivity analysis using the Design of Experiments (DOE)

technique, which could be more efficient and could cater to

interactions among model parameters. Interested readers

can refer to [36] for more details.
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TABLE 5
Sensitivity Analysis Results for Example 5 When a and c2

Change Separately

TABLE 6
Sensitivity Analysis Results for Example 5 When a and c2

Change Simultaneously and in the Same Direction

TABLE 7
Sensitivity Analysis Results for Example 5 When a and c2

Change Simultaneously and in the Reverse Direction
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6 CONCLUSION

Most of the existing research on the optimal software

release problem gives insufficient consideration to the

uncertainty (variability) of software cost and the formuliza-

tions of the problem are generally based on the treatment

(such as minimization) of the EC. Since it is the AC, rather

than the EC, that is meaningful to a specific software

project, these formulations seem to have some flaws. If

these formulations are used, then the solution obtained may

give management a false dawn that the cost of this software

project would be at a low level (e.g., has been minimized).

In fact, what has been minimized or guaranteed to be below

a certain level is the EC, not the AC; thus, there exists a

certain level of risk that the AC of the project may be

unexpectedly high and the project may run over budget.

In this paper, we study the uncertainty (variability) in

software cost and its impact on optimal software release

time in detail. It is clearly shown that there exists a certain

level of uncertainty in the AC of a software project that

should not be ignored. The uncertainty can be quantified

either by the variance of the AC or by the risk functions

defined in this paper. The risk functions for the basic

software cost model (24) and for the generalized software

cost model (31) are studied in detail by several examples. A

risk-control approach to the optimal software release

problem is proposed and new problem formulations are

developed that are extensions of current formulations.

Solution procedures for new formulations under certain

conditions are established.

The main contribution of the research presented in this

paper is to demonstrate the important fact that, in the

optimal software release problem, the uncertainty involved

in software cost should not be neglected. Based on this

standpoint, we advocate adequate consideration of the

uncertainty in software cost in future related research.

It is known that there exist many aspects of uncertainty

in software cost/effort estimation [23], [24]. In this paper,

we also propose conducting sensitivity analysis to study the

uncertainty resulting from estimation of model parameters.

Nevertheless, there are other aspects of uncertainty that

have not been addressed in this paper, e.g., that result from

unrealistic assumptions on which the SRM used is based. It

can also be noted that, besides using risk functions to

quantify the uncertainty in software cost, other methods,

such as interval estimation, can be adopted as well. These

could be our future research topics.

APPENDIX

PROOF OF THEOREM 2

From (23), we have P�
2 ðT Þ ¼ 1� f�ðT Þ, where

f�ðT Þ ¼ Pr CðT Þ � ð1þ �Þ � E CðT Þ½ �f g: ð54Þ

Substituting (24) and (25) into (54), we have

f�ðT Þ ¼ Pr
c1NðT Þ þ c2 Nð1Þ �NðT Þ½ � þ c3T

� �
ð1þ �Þ � c1mðT Þ þ c2 m1 �mðT Þ½ � þ c3T

�f g

� �

¼ Pr NðT Þ þ c2

c1
Nð1Þ �NðT Þ½ � � �2

� �
;

ð55Þ

where �2 is given by (30).
Because NHPP has independent increments, NðT Þ and

Nð1Þ �NðT Þ are independent random variables and

follow the Poisson distribution with parameters mðT Þ and

m1 �mðT Þ, respectively. Therefore, from probability theo-

ry, we have

f�ðT Þ ¼
X

kþc2j=c1��1

Pr NðT Þ ¼ kf gPr Nð1Þ �NðT Þ ¼ jf g

¼
Xkup
k¼0

Xjk
j¼0

Pr NðT Þ ¼ kf gPr Nð1Þ �NðT Þ ¼ jf g

¼
Xkup
k¼0

Xjk
m¼0

mðT Þ½ �k

k!
e�mðT Þ

m1 �mðT Þ½ �j

j!
e� m1�mðT Þ½ �

¼ e�m1
Xkup
k¼0

Xjk
j¼0

mðT Þ½ �k

k!

m1 �mðT Þ½ �j

j!
;

ð56Þ

where k, j are nonnegative integers and kup and jk are given

by (30). Finally, we have

P�
2 ðT Þ ¼ 1� f�ðT Þ

¼ 1� e�m1
Xkup
k¼0

Xjk
j¼0

mðT Þ½ �k

k!

m1 �mðT Þ½ �j

j!
;
ð57Þ

by which Theorem 2 is proven. tu
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